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Scalable and reliable deep learning for 
computational microscopy

» Physics-guided measurement design for efficient large-SBP imaging
» Uncertainty quantification towards reliable deep learning

20 um

! =  0.105 rad

rad

0

10

5

0

1

0.3

0.7

prob.

0

2

1

rad

0

2

1

rad

Predicted phase Predicted credible 
interval (95%)

Predicted credibility True error

[1] Xue, Cheng, Li, Tian , “Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging”, arXiv (2019).
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Computational Phase Imaging

find                  x
such that     Intensity = |Ax|2

x A
detector

(measures only intensity)
imaging systeminput field

(amplitude & phase)

Computation

Hardware & Acquisition design 
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• Model based inversion
• Learning based inversion 

Computational strategy can also influence the 
hardware design & data capture strategy



Microcontroller

Computational microscopy using an LED array

Camera

LED array

Programmable illumination pattern

Lei Tian, Boston U.



LED array
scan illumination 

in (qx,qy)

top target

bottom target

- Each LED encodes distinct angular information
- Intensity-only measurement (no interferometry)
- Any phase, diffraction & scattering information is 

recovered by optimization algorithms

Computational microscopy using an LED array
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Multimodal computational microscopy

Lei Tian, Boston U.

3D imaging

Ling, Tahir, Lin, Lee, Tian, Biomed. Opt. 
Express 9, 2130-2141 (2018).

500 µm 40 µm

Phase & High resolution

Xue, Cheng, Li, Tian , “Illumination coding meets uncertainty learning: 
toward reliable AI-augmented phase imaging”, arXiv (2019)



Physical model based phase microscopy

» Asymmetric illumination encodes both phase and high resolution 
information
» Differential Phase Contrast Microscopy
» Fourier Ptychographic Microscopy

Four asymmetric 
brightfield to 
achieve 2X NA 
resolution

object
(real 

space)
LED array

camer
a

Pupil plane
(Fourier space)

existing microscope

… Many brightfield 
and darkfield to 
achieve >2X NA 
resolution
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Brightfield = Left + RightLeft – Right
Left + RightDPC=

Left

Right

Differential phase contrast (DPC) by asymmetric 
illumination

Kachar, Science 227, 27 (1985).
[1] Mehta, Sheppard, Opt. Lett. 34, 1924 (2009).
[2] Ford, Chu, Mertz, Nat. Methods 9, 1195 (2012).

related to the gradient of phase[1,2]

60µm
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Phase transfer function for DPC

Tian, Waller, Opt. Express 23(9), 11394-11403 (2015).

» But…transfer function means linear?

à weak object approximation

» 2x better resolution than coherent case 
(e.g. interferometry)
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Phase reconstruction from DPC measurements

DPC image Phase

60µm

rad

0

9.6
deconvolution

Object’s 
Fourier 
space

Phase to intensity
transfer function

Tian, Waller, Opt. Express 23(9), 11394-11403 (2015).

kx

ky

NAimaging

object

LED array
camera

Fourier 
space

existing microscope
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Real-time DPC in vitro

50µm

10µm

10µm

Neural Progenitor Cell

FoV
400µm NA 0.8

4 images
Time = 0.1s

10 Hz
resolution ~0.4 µm 

L. Tian and L. Waller, Opt. Express 23(9), 11394-11403 (2015).
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+ Fast
- Must trade space for spatial bandwidth!

Differential phase contrast

t
Time ~ 0.02 - 0.1s

0.8mm2

FOV
NA 0.8

~4 images

Spatio-temporal bandwidth engineering
by computational microscopy

20mm2

FOV NA 0.4

Space Bandwidth TimeData requirement & LED patterns

Lei Tian, Boston U.



Wide field-of-view and high resolution for 
high-throughput, multi-scale imaging

Unstained 
Human Bone 
Osteosarcoma 
Epithelial U2OS
sample

~10,000 cells 

2.1mmx1.7mm
resolution ~400nm

13k x 11k pixels 
reconstructed

200µm

20µm

20µm

20µm
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Fourier ptychography: synthetic aperture
+ phase retrieval

object
(real space)

LED array

camera

Pupil plane
(Fourier space)

kx

ky

NAimaging

NAillumination

object’s
Fourier space

low-resolution image

Zheng, Horstmeyer, Yang, Nat. Photon. (2013)
Tian, Li, Ramchandran, Waller, Biomed. Opt. Express (2014). 

» Capture data with low magnification 
objective lens:
» wide field-of-view
» but… small bandwidth

» Improve resolution by synthetic aperture
» NAfinal = NAillumination + NAimaging

existing microscope
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Phase retrieval by nonlinear optimization

Forward Model
Estimated Object in 

Fourier space

O(k)

Pupil function

P (k+ k`)F�1{ }

Estimated
Intensity

Î`(r) = | |2

Inverse problem

min
O(k)

X
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��
���
2

Measured Amplitude Estimated Amplitude
Ptychography:
J. Rodenburg, H. Faulkner, Appl. Phys. Lett. (2004).
P. Thibault, et al, Ultramicroscopy (2009).

Fourier Ptychography:
Zheng, Horstmeyer, Yang, Nat. Photon. (2013).
Ou, Yang, Opt. Express (2013).
Tian, Li, Ramchandran, Waller, Biomed. Opt. Express (2014). 

Phase diversity:
Fienup, Appl. Opt. (1982).
Paxman, Schulz, Fienup, JOSA A (1992). 
Guizar-Sicairos, Fienup, Opt. Express (2008).

kx

ky object’s
Fourier space
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Phase retrieval by nonlinear optimization

Ptychography:
J. Rodenburg, H. Faulkner, Appl. Phys. Lett. (2004).
P. Thibault, et al, Ultramicroscopy (2009).

Fourier Ptychography:
Zheng, Horstmeyer, Yang, Nat. Photon. (2013).
Ou, Yang, Opt. Express (2013).
Tian, Li, Ramchandran, Waller, Biomed. Opt. Express (2014). 

Phase diversity:
Fienup, Appl. Opt. (1982).
Paxman, Schulz, Fienup, JOSA A (1992). 
Guizar-Sicairos, Fienup, Opt. Express (2008).
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Fourier Ptychography[1] achieves resolution
beyond the objective’s diffraction limit

Raw data, central LED on Reconstruction from 293 images

4x 0.1NA à NAreconstructed = 0.6

300µm

20µm

Full field of view image

[1] Zheng, Horstmeyer, Yang, Nat. Photon. (2013)
[2] Tian, Li, Ramchandran, Waller, Biomed. Opt. Express (2014)
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Hela cancer cells (Yildiz lab, UCB)

3
rad

-1

80x FOV

60x FOV

40x FOV

20µm

15µm

Time-lapse live cell imaging

200µm

2min interval for 4 hrs
resolution ~0.4 µm 

FOV 
5mm2 NA 0.8

t
173 images
Time = 7s

15µm

60x FOV

10µm

Tian, et. al, Optica (2015)

Phase



20mm2 

FOV
NA 0.8

t

~ 200 - 300 images

...
Fourier Ptychography

+ Large Space-Bandwidth Product
- Must trade time and large-data requirement!

Time ~ 7 sec

Spatio-temporal bandwidth engineering
by computational microscopy

Space Bandwidth TimeData requirement & LED patterns

Lei Tian, Boston U.



Coding strategy:
1) DPC covers 2NA with only 4 

images for all brightfield LEDs
2) Random coding for 8-multiplexed 

darkfield LEDs

Hybrid Multiplexing: DPC + random darkfield

ky

NAfinal

Fourier space

kx

Tian, Li, Ramchandran, Waller, Biomed. Opt. Express (2014)
Tian, Liu, Yeh, Chen, Zhong, Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy”, Optica (2015)
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Multiplexing reduces acquisition time and data size

50µm

low resolution zoom-in
Sequential method

293 images
Multiplexing

40 images

Only require 13% of data!4x 0.1NA  à NAreconstructed = 0.6

Tian, Li, Ramchandran, Waller, Biomed. Opt. Express (2014)
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FOV 
5mm2 NA 0.8

t

21 images
Time = 0.8s

0.8s acquisition time
resolution ~0.4 µmMulti-scale live cell imaging

adult rat Neural Stem Cells 
(Schaffer lab, UCB)

200µm

3

phase
(rad)

-1

Phase

10 µm
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Resolution improvement factor
(NAfinal/NAobjective)
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Sequential
Multiplexed

Space Bandwidth TimeData requirement & LED patterns

20mm2 

FOV t

Time ~ 0.8 sec

~ 20 - 30 images

NA 0.8
...

Multiplexed FPM

Spatio-temporal bandwidth engineering
by computational microscopy

+ Large Space-Bandwidth Product
+ Faster acquisition
- poor scalability for large space-
bandwidth product (SBP) imaging

Lei Tian, Boston U.

[1] Tian, Liu, Yeh, Chen, Zhong, Waller, “Computational illumination for high-
speed in vitro Fourier ptychographic microscopy”, Optica (2015) 



Fast dynamics create motion blurs

200µm

2.1mm

1.
7m

m

3
rad

-1

20x FOV

Reconstructed Phase

10µm

Sequential FPM~7s Multiplexed FPM~0.8s DPC~0.16s

Human mammary epithelial 
(MCF10A) cells have fast sub-
cellular dynamics > 1Hz

Need for faster acquisition!

Lei Tian, Boston U.



Computational Phase Imaging

find                  x
such that     Intensity = |Ax|2

x A
detector

(measures only intensity)
imaging systeminput field

(amplitude & phase)

Computation

Hardware & Acquisition design 

Lei Tian, Boston U.

• Model based inversion
• Learning based inversion 

Computational strategy can also influence the 
hardware design & data capture strategy



How to improve scalability for large-SBP imaging?
» The number of measurements 

increases quadratically with final 
resolution[1]

» How to improve scalability for 
Spatio-temporal bandwidth 
engineering?

[1] Tian, Liu, Yeh, Chen, Zhong, Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy”, Optica (2015) 
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Physics-guided deep learning for efficient large-SBP 
phase imaging

» Asymmetric illumination encodes both phase and high resolution 
information
» Differential Phase Contrast Microscopy
» Fourier Ptychographic Microscopy

Four asymmetric 
brightfield to 
achieve 2X NA 
resolution

object
(real 

space)
LED array

camer
a

Pupil plane
(Fourier space)

existing microscope

… Many brightfield 
and darkfield to 
achieve >2X NA 
resolution

Lei Tian, Boston U.

Design more efficient measurement by 
combining physics and deep learning



kx

ky
object’s

Fourier space

LEDx

LEDyIllumination 
pattern

Physics-guided measurements for deep learning 
using multiplexed illumination

Xue, Cheng, Li, Tian, “Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging”, arXiv (2019)

Same Fourier 
coverage,

Highly multiplexed

• Asymmetric illumination from 2 brightfield & 3 darkfield
• multiplex phase and high resolution efficiently

Lei Tian, Boston U.



» 5 measurements 
regardless of final 
resolution NAfinal

Multiplexed illumination

Highly multiplexed
But... highly ill-posed

Deep Neural Network (DNN)

Solve

[1] Bostan, Soltanolkotabi, Ren, Waller, “Accelerated Wirtinger flow for multiplexed Fourier ptychographic microscopy”, arXiv (2018)
[2] Chen, Fannjiang, “Coded aperture ptychography: uniqueness and reconstruction”, Inverse Problems (2018)

Physics-guided measurements for deep learning using 
multiplexed illumination

Lei Tian, Boston U.



Untrained network

Deep neural network can solve highly ill-posed inverse 
problems
» Network architecture: a customized “U-Net”[1-2]

[1] Ronneberger, Fischer, Brox, “U-Net: Convolutional Networks for Biomedical Image segmentation”, MICCAI (2015)
[2] Falk, et. al., “U-Net: deep learning for cell counting, detection and morphometry”, Nat. Methods (2018)
[3] Xue, Cheng, Li, Tian , “Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging”, arXiv (2019)

Training:Input stack

Ground truth (sequential FPM)

Lei Tian, Boston U.



Trained network

Deep neural network can solve highly ill-posed inverse 
problems

Prediction:

Input stack

Predicted phase

[1] Xue, Cheng, Li, Tian , “Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging”, arXiv (2019).
[2] Sinha, Ayan, et al. "Lensless computational imaging through deep learning." Optica 4.9 (2017): 1117-1125.
[3] Goy, Alexandre, et al. "Low photon count phase retrieval using deep learning." Physical review letters 121.24 (2018): 243902.
[4] Li, Shuai, et al. "Imaging through glass diffusers using densely connected convolutional networks." optica 5.7 (2018): 803-813.
[5] Nguyen, Thanh, et al. "Deep learning approach for Fourier ptychography microscopy." Optics express 26.20 (2018): 26470-26484.
[6] Rivenson, et al. "Phase recovery and holographic image reconstruction using deep learning in neural networks." Light: Science & Applications (2018).
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Large-SBP phase prediction

500 µm

40 µm

rad

0

8

4

Hela (fixed in ethanol)
NAobjective =  0.1
NAillumination =  0.4
NAfinal =  0.5
FOV:    4.2X3.5mm2

Lei Tian, Boston U.



Scalable and reliable deep learning for 
computational microscopy

» Physics-guided measurement design for efficient large-SBP imaging
» Uncertainty quantification towards reliable deep learning
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[1] Xue, Cheng, Li, Tian , “Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging”, arXiv (2019).
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Need for uncertainty quantification for 
deep Learning applied to biomedical imaging

» Existing examples of DNN solving nonlinear, complex problems
» Super resolution[1], phase imaging[2], holography[3], imaging through 

scattering[4], virtual staining/labeling[5], … 
» Though effective, remains a black box

» Importance of uncertainty quantification[7]

[1] Wang, et. al, “Deep learning enables cross-modality super-resolution in fluorescence microscopy”, Nat. Methods (2019).
[2] Goy, Arthur, Li, Barbastathis, “Low photon count phase retrieval using deep learning”, Phys. Rev. Lett. (2018) 
[3] Rivenson, et al. "Phase recovery and holographic image reconstruction using deep learning in neural networks." Light: Science & Applications (2018).
[4] Li, Xue, Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media”, Optica (2018)
[5] Christiansen, et al. "In silico labeling: Predicting fluorescent labels in unlabeled images." Cell 173.3 (2018): 792-803.
[6] Weigert, et. al.., “Content-aware image restoration: pushing the limits of fluorescence microscopy”, Nat. Methods (2018)
[7] Begoli, Bhattacharya, Kusnezov, “The need for uncertainty quantification in machine-assisted medical decision making”, Nat. Mach. Intell. (2019)

Input OutputBLACK BOX

How much should we trust it?

Lei Tian, Boston U.



Why uncertainty quantification?

How to assess errors in DNN predictions?

DNN hallucinations

Lei Tian, Boston U.



Uncertainties in DNN

» Two types of uncertainties in deep learning: 

• Model uncertainty: 

• Randomness in training process:
• Stochastic gradient descent 

training algorithm
• Network initialization
à Trained model varies in 
different rounds!

• Data uncertainty: 

• Experimental noise:
• Sensor noise
• Misalignment
• Spatial varying aberration
• etc.
à Can lead to prediction 
artifacts!

[1] Kiureghian, Ditlevsen, “Aleatory or epistemic? Does it matter?”, Struct. Saf. (2009)
[2] Kendall, Gal, “What uncertainties do we need in Bayesian deep learning for computer vision”, NIPS (2017)

How do we quantify uncertainties?
à Bayesian DNN

Lei Tian, Boston U.



Overview of Bayesian DNN

» Both DNN weights and predictions are random variables
» Apply Bayes’ rule to DNN prediction…

Bayesian DNN

! " #∗, &, ' = )! " #∗,* ! * &, ' +*
Data uncertainty term

Model uncertainty termProbability of the prediction given 
the training and testing data

[1] Kiureghian, Ditlevsen, “Aleatory or epistemic? Does it matter?”, Struct. Saf. (2009)
[2] Kendall, Gal, “What uncertainties do we need in Bayesian deep learning for computer vision”, NIPS (2017)
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» To quantify model uncertainty:
» Deep Ensembles[1]

Model uncertainty quantifies stochasticity in DNN

Network 1 Network 2 Network N

......

Input

Prediction 1 Prediction 2 Prediction N

Train multiple 
networks with same 
data and structure

Statistical 
analysis

......

[1] Lakshminarayan, Pritzel, Blundell, “Simple and scalable Predictive Uncertainty Estimation using Deep Ensembles”, NIPS, (2017) 
[2] Gal, Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning”, ICML (2016)

Lei Tian, Boston U.



» To quantify model uncertainty:
» Deep Ensembles[1]

» Dropout Network[2]

Dropout Network

Input

Train one network 
with dropout layers

Prediction 1 Prediction 2 Prediction N......

Statistical 
analysis

[1] Lakshminarayan, Pritzel, Blundell, “Simple and scalable Predictive Uncertainty Estimation using Deep Ensembles”, NIPS, (2017) 
[2] Gal, Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning”, ICML (2016)

Model uncertainty quantifies stochasticity in DNN

Lei Tian, Boston U.



» To quantify data uncertainty:
» Commonly used loss function: mean squared error (MSE), mean 

absolute error (MAE), etc.

» Our customized loss function: 

Data uncertainty quantifies randomness in data

!"## =% & − ()*+,

-)*+,
+ log(2-)*+,)

Assumes uniform noise across all 
measurements

Pixel-wise variance allows quantification of 
non-uniform noise

()*+,: pixel-wise mean

-)*+,: pixel-wise variance

Xue, Cheng, Li, Tian , “Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging”, arXiv (2019)

• Only samples (x, y) needed for training
• Network “learns” pixel-wise mean & variance 

from data

Lei Tian, Boston U.



Uncertainty learning framework

Trained Network

Prediction 1

phase data uncertainty

Prediction 2

phase data uncertainty

Prediction N

phase data uncertainty

…

predicted phase

data uncertainty

model uncertainty

Statistical 
analysis

Lei Tian, Boston U.



Statistical analysis for uncertainty quantification 

data uncertainty: 

mean of the predicted 
variance 

model uncertainty: 

variance of the 
predicted mean (phase)

Total uncertainty:

Xue, Cheng, Li, Tian , “Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging”, arXiv (2019)

Lei Tian, Boston U.



Predicted uncertainty correlates with true error
Predicted phase

Ground truthTrue error

Input stack

Predicted uncertainty

Highly
correlated

Hela (fixed in ethanol)
NAobjective =  0.1
NAillumination =  0.4
NAfinal =  0.5
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Scalability in cell types and resolution

predicted phase predicted uncertainty error map
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Predicted uncertainty as surrogate to the true error

[1] Xue, Cheng, Li, Tian , “Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging”, arXiv (2019)
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Reliability assessment by Bayesian statistical inference

» Quantification of reliability of the predicted phase
» Credible interval quantitatively estimates the error bound in the prediction
» Credibility provides a probabilistic measure of the reliability of prediction in %
» Reliability diagram measures predicted credibility vs true accuracy.

[1] Xue, Cheng, Li, Tian , “Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging”, arXiv (2019)

[2] Niculescu-Mizil, Caruana, “Predicting good probabilities with supervised learning”, ICML, (2005)
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Time series prediction and identification of rare events

......

t
Train on a single frame Test on the entire time series

0 min 40 min 80 min 200 min

20 um

80 min 120 min 160 min 200 min

Credibility decreases when 
‘rare’ events take place

Phase

Credibility

Hela (live)
NAobjective =  0.2
NAillumination =  0.6
NAfinal =  0.8
FOV:  2.1X1.8mm2

Lei Tian, Boston U.



Full FOV phase prediction Full FOV credibility

Sub-FOV (A) Sub-FOV (B) Sub-FOV (C) Sub-FOV (D)

(D)

(A)

(C)

(B)

Ph
as

e
C

re
di
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lit

y

Credibility maps identifies less confident prediction feature
• Hallucination artifacts marked with low credibility
• Improve training data à more robust prediction
• Rare biological events à (maybe) can facilitates new discovery

Hela (live)
NAobjective =  0.2
NAillumination =  0.6
NAfinal =  0.8
FOV:  2.1X1.8mm2

Lei Tian, Boston U.



Scalable and reliable deep learning for 
computational microscopy

» Physics-guided measurement design for efficient large-SBP imaging
» Uncertainty quantification towards reliable deep learning
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[1] Xue, Cheng, Li, Tian , “Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging”, arXiv (2019).
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