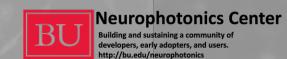
Scalable and **reliable** deep learning for computational microscopy

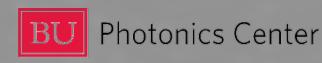
Lei Tian

Computational Imaging Systems Lab

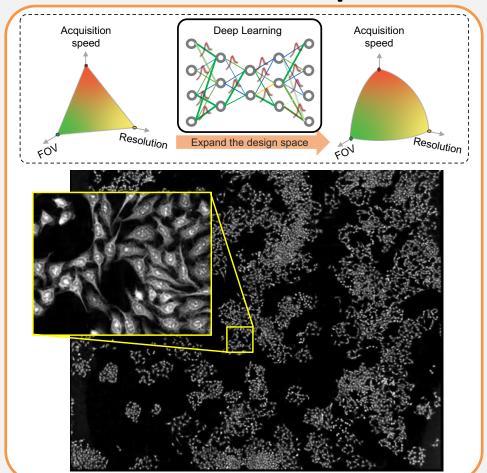
Department of Electrical and Computer Engineering
Boston University
leitian@bu.edu

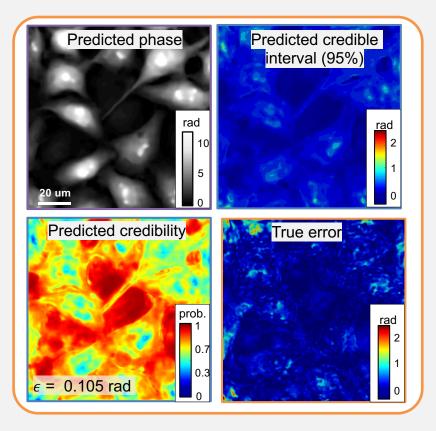
http://sites.bu.edu/tianlab/





Scalable and **reliable** deep learning for computational microscopy





- » *Physics-guided* measurement design for efficient large-SBP imaging
- » Uncertainty quantification towards reliable deep learning

[1] Xue, Cheng, Li, Tian, "Illumination coding meets uncertainty learning: toward reliable Al-augmented phase imaging", arXiv (2019).

Computational Phase Imaging

Hardware & Acquisition design

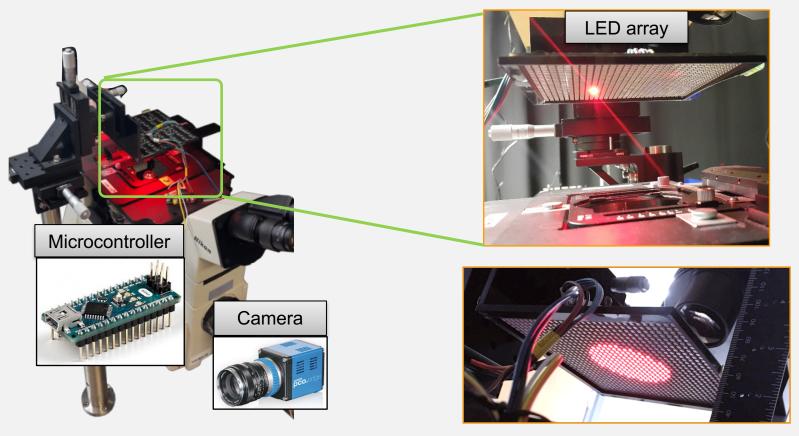
input field → imaging system → detector (amplitude & phase) (measures only intensity)

Computational strategy can also influence the hardware design & data capture strategy

such that $|Ax|^2$

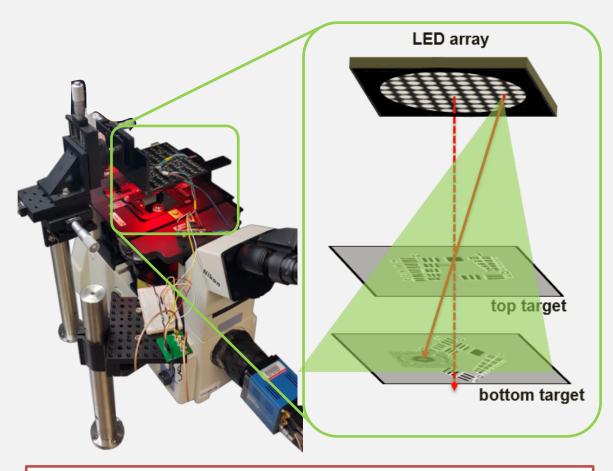
- Model based inversion
- Learning based inversion

Computational microscopy using an LED array



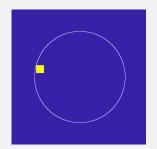
Programmable illumination pattern

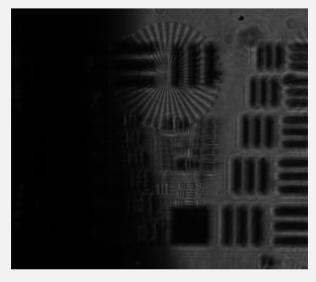
Computational microscopy using an LED array



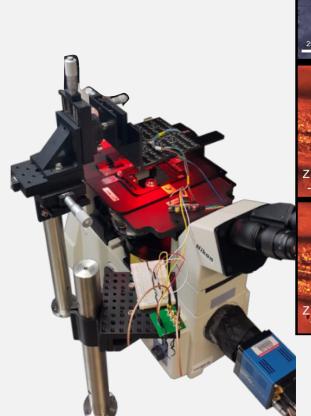
- Each LED encodes distinct angular information
- **Intensity-only** measurement (no interferometry)
- Any **phase, diffraction** & **scattering** information is recovered by optimization algorithms

scan illumination in (θ_x, θ_y)



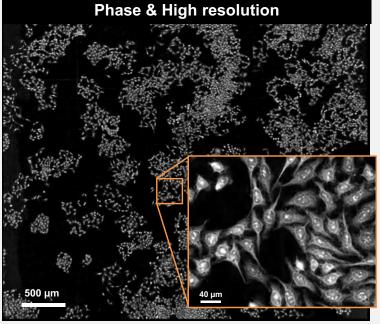


Multimodal computational microscopy



3D imaging $t = 0 \sec c$ Z plane Z plane $-8 \mu m$ -2 μm Z plane Z plane $6 \, \mu \text{m}$ $1~\mu \mathrm{m}$

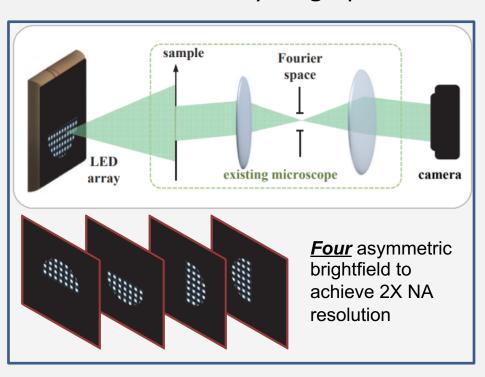
Ling, Tahir, Lin, Lee, Tian, Biomed. Opt. Express 9, 2130-2141 (2018).

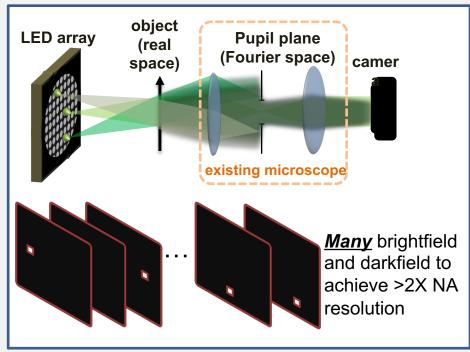


Xue, Cheng, Li, Tian , "Illumination coding meets uncertainty learning: toward reliable Al-augmented phase imaging", arXiv (2019)

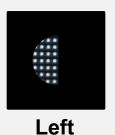
Physical model based phase microscopy

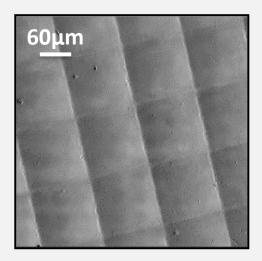
- » Asymmetric illumination encodes both phase and high resolution information
 - » Differential Phase Contrast Microscopy
 - » Fourier Ptychographic Microscopy

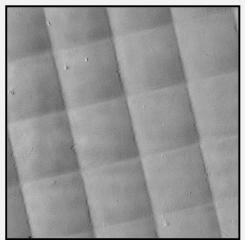


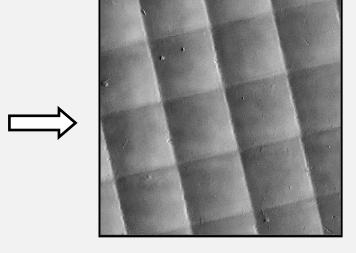


Differential phase contrast (DPC) by asymmetric illumination





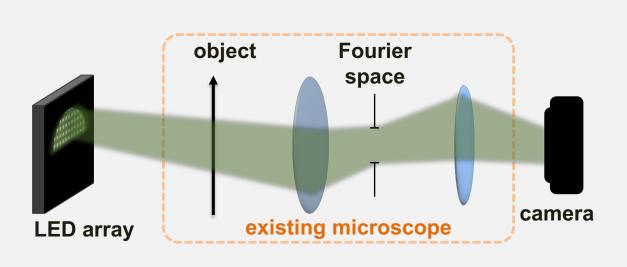


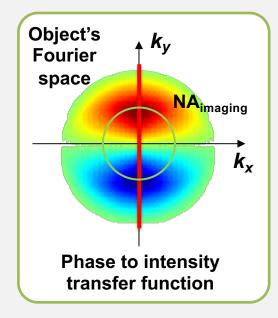


related to the gradient of phase^[1,2]

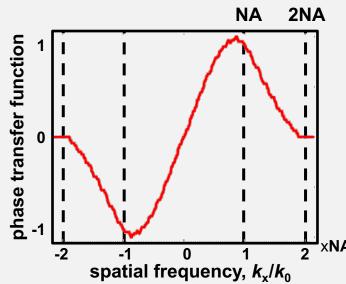
Kachar, Science 227, 27 (1985). [1] Mehta, Sheppard, Opt. Lett. 34, 1924 (2009). [2] Ford, Chu, Mertz, Nat. Methods 9, 1195 (2012).

Phase transfer function for DPC



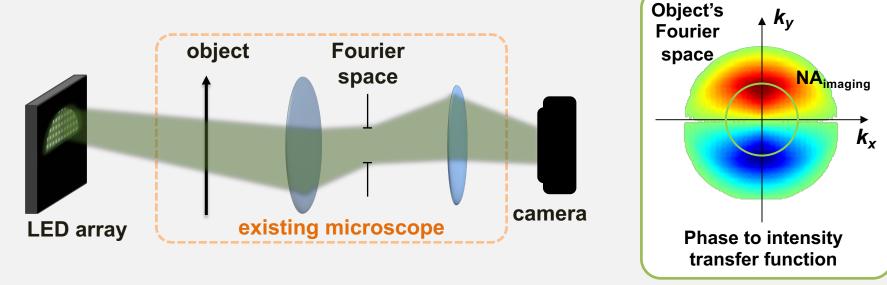


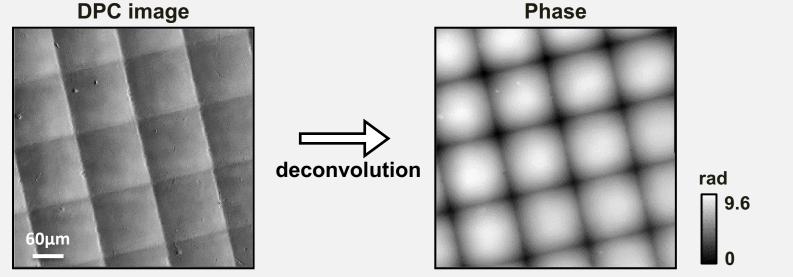
- » But...transfer function means linear?
 - → weak object approximation
- 2x better resolution than coherent case (e.g. interferometry)



Tian, Waller, Opt. Express 23(9), 11394-11403 (2015).

Phase reconstruction from DPC measurements



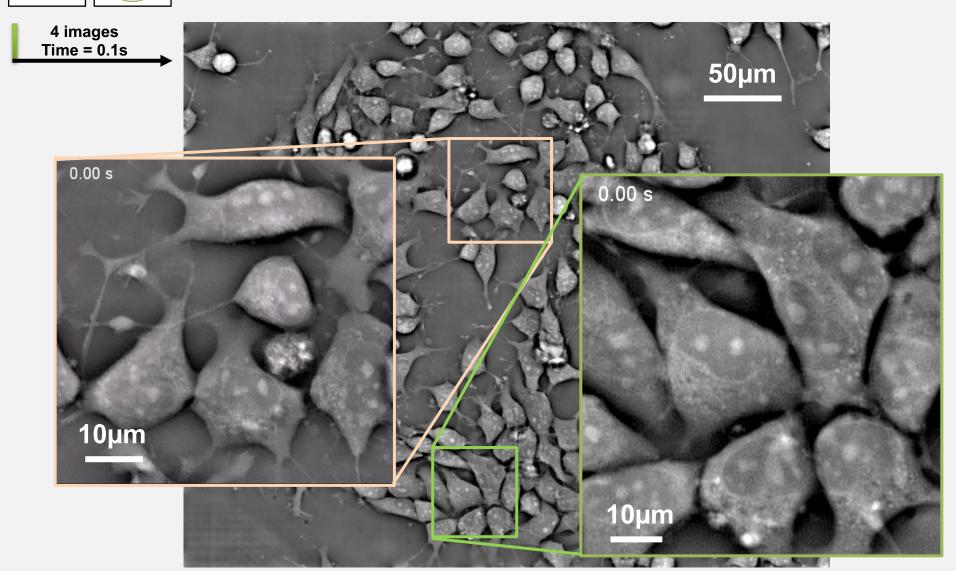


Tian, Waller, Opt. Express 23(9), 11394-11403 (2015).

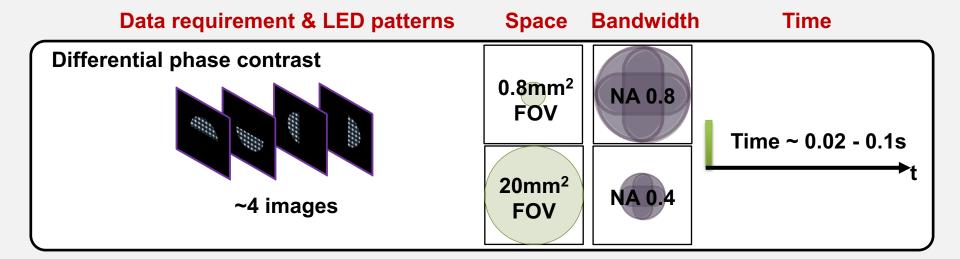
FoV 400µm

Real-time DPC in vitro

10 Hz resolution $^{\sim}0.4~\mu m$

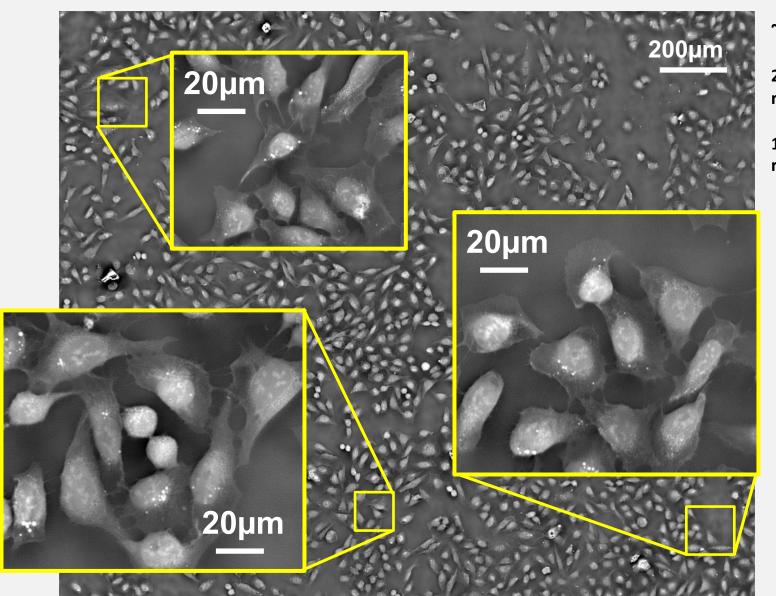


Spatio-temporal bandwidth engineering by computational microscopy



- + Fast
- Must trade space for spatial bandwidth!

Wide field-of-view and high resolution for high-throughput, multi-scale imaging



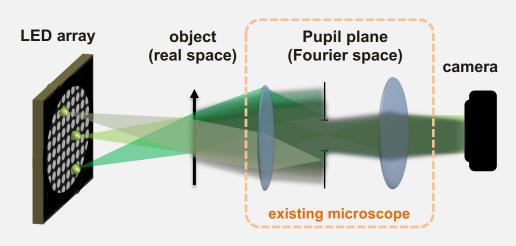
~10,000 cells

2.1mmx1.7mm resolution ~400nm

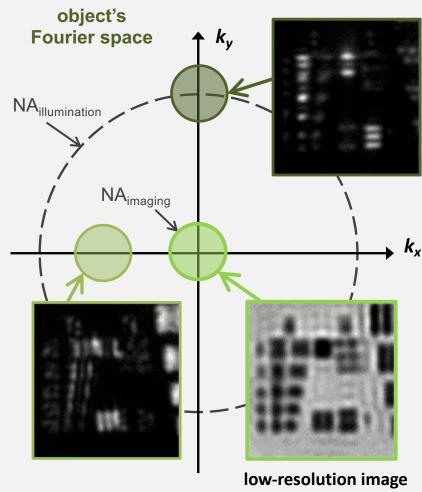
13k x 11k pixels reconstructed

Unstained Human Bone Osteosarcoma Epithelial U2OS sample

Fourier ptychography: synthetic aperture + phase retrieval

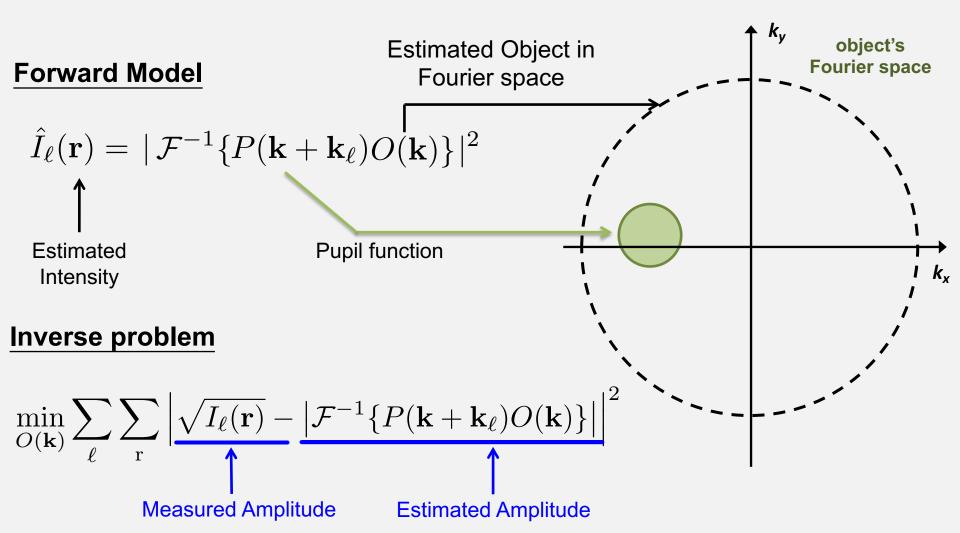


- » Capture data with low magnification objective lens:
 - » wide field-of-view
 - » but... small bandwidth
- » Improve resolution by synthetic aperture
 - $NA_{final} = NA_{illumination} + NA_{imaging}$



Zheng, Horstmeyer, Yang, *Nat. Photon.* (2013) Tian, Li, Ramchandran, Waller, *Biomed. Opt. Express* (2014).

Phase retrieval by nonlinear optimization



Phase diversity:

Fienup, Appl. Opt. (1982). Paxman, Schulz, Fienup, JOSA A (1992). Guizar-Sicairos, Fienup, Opt. Express (2008).

Ptychography:

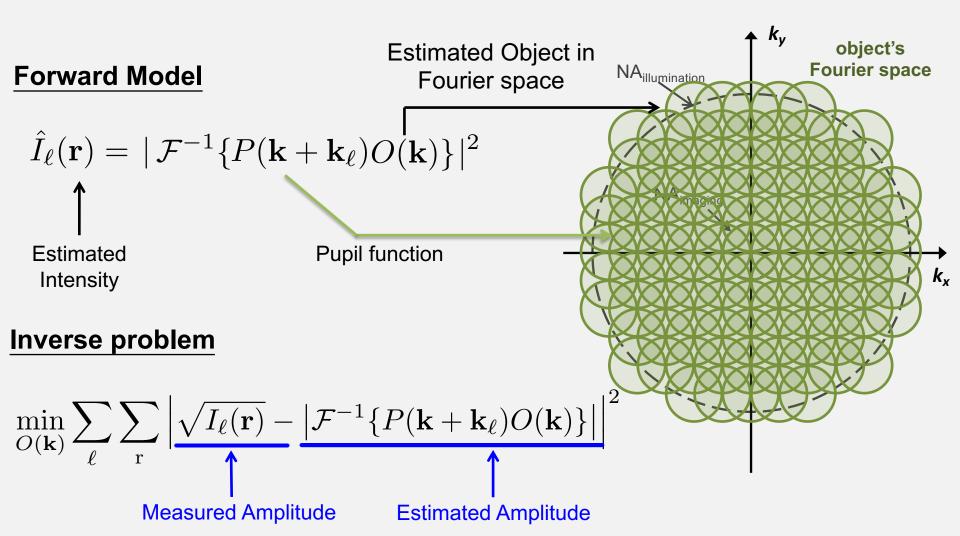
- J. Rodenburg, H. Faulkner, Appl. Phys. Lett. (2004).
- P. Thibault, et al, *Ultramicroscopy* (2009).

Fourier Ptychography:

Zheng, Horstmeyer, Yang, *Nat. Photon.* (2013). Ou, Yang, *Opt. Express* (2013).

Tian, Li, Ramchandran, Waller, Biomed. Opt. Express (2014).

Phase retrieval by nonlinear optimization



Phase diversity:

Fienup, Appl. Opt. (1982).
Paxman, Schulz, Fienup, JOSA A (1992).
Guizar-Sicairos, Fienup, Opt. Express (2008).

Ptychography:

- J. Rodenburg, H. Faulkner, Appl. Phys. Lett. (2004).
- P. Thibault, et al, *Ultramicroscopy* (2009).

Fourier Ptychography:

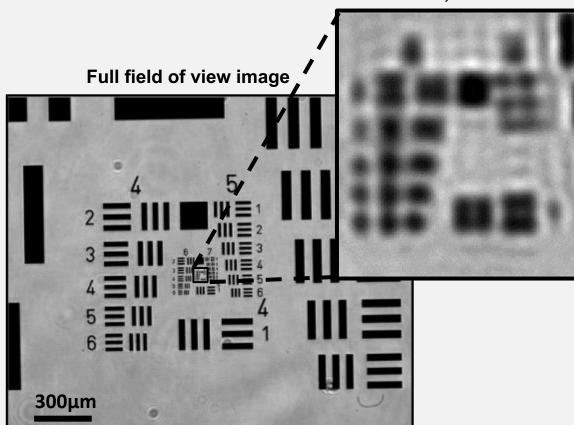
Zheng, Horstmeyer, Yang, *Nat. Photon.* (2013). Ou, Yang, *Opt. Express* (2013).

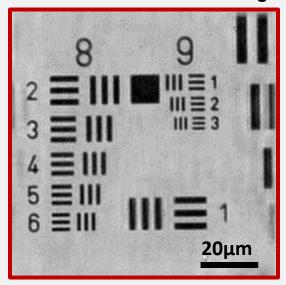
Tian, Li, Ramchandran, Waller, Biomed. Opt. Express (2014).

Fourier Ptychography^[1] achieves resolution beyond the objective's diffraction limit

Raw data, central LED on

Reconstruction from 293 images

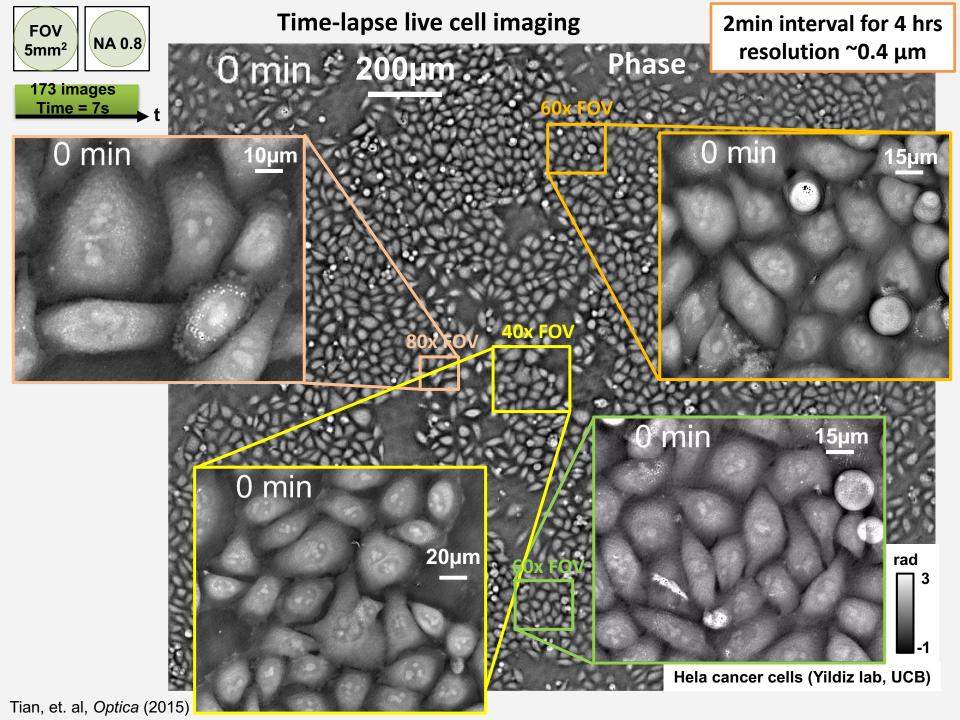




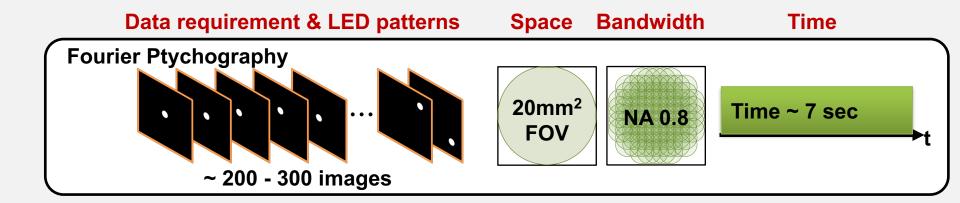
 $4x \ 0.1NA \rightarrow NA_{reconstructed} = 0.6$

^[1] Zheng, Horstmeyer, Yang, Nat. Photon. (2013)

^[2] Tian, Li, Ramchandran, Waller, Biomed. Opt. Express (2014)

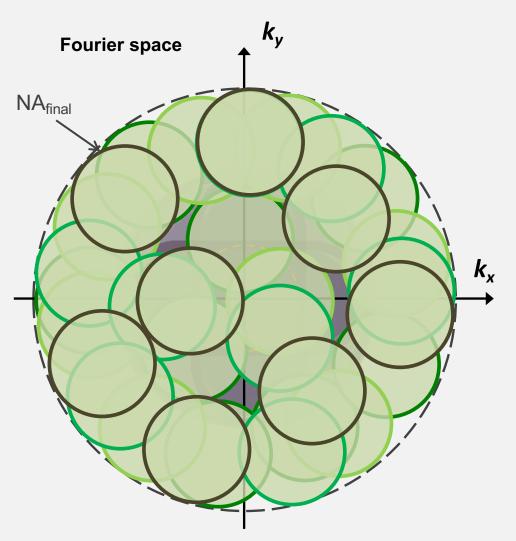


Spatio-temporal bandwidth engineering by computational microscopy



- + Large Space-Bandwidth Product
- Must trade time and large-data requirement!

Hybrid Multiplexing: DPC + random darkfield

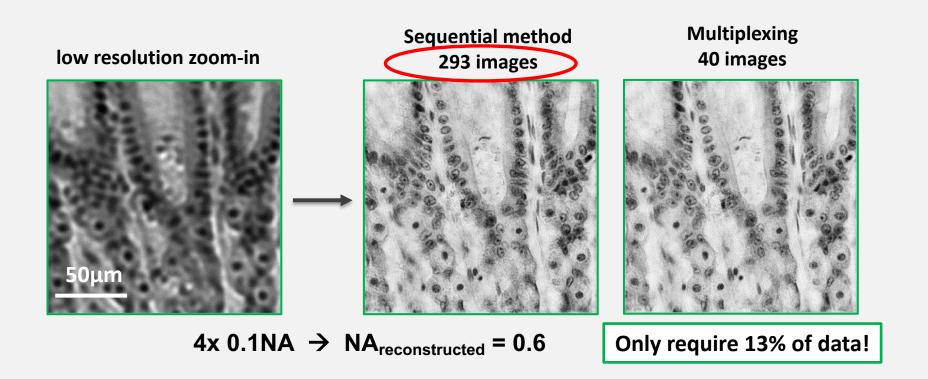


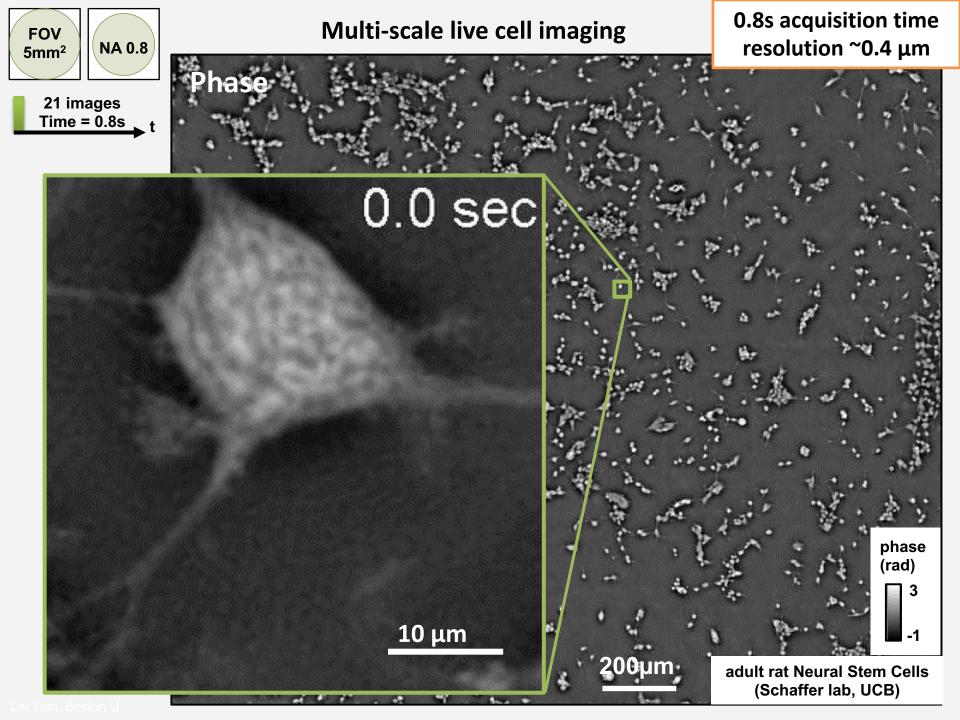
Coding strategy:

- DPC covers 2NA with only 4 images for all brightfield LEDs
- Random coding for 8-multiplexed darkfield LEDs

Tian, Li, Ramchandran, Waller, *Biomed. Opt. Express* (2014)
Tian, Liu, Yeh, Chen, Zhong, Waller, "Computational illumination for high-speed *in vitro* Fourier ptychographic microscopy", *Optica* (2015)

Multiplexing reduces acquisition time and data size





Spatio-temporal bandwidth engineering by computational microscopy

Multiplexed FPM

- 20 - 30 images

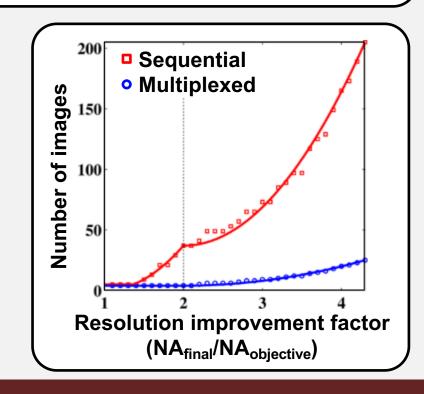
Space Bandwidth Time

20mm²
FOV

NA 0.8

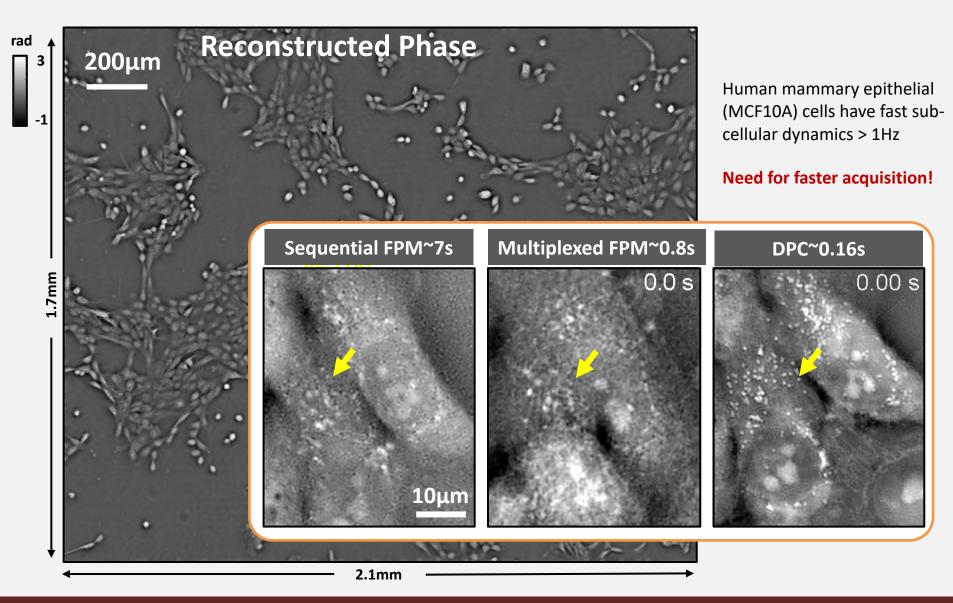
Time ~ 0.8 sec

- + Large Space-Bandwidth Product
- + Faster acquisition
- poor scalability for large spacebandwidth product (SBP) imaging



[1] Tian, Liu, Yeh, Chen, Zhong, Waller, "Computational illumination for high-speed *in vitro* Fourier ptychographic microscopy", *Optica* (2015)

Fast dynamics create motion blurs



Computational Phase Imaging

Hardware & Acquisition design

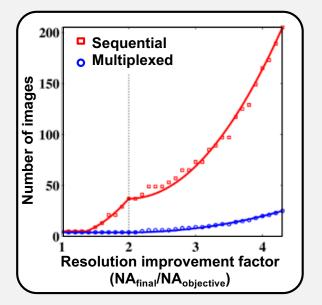
Computational strategy can also influence the hardware design & data capture strategy

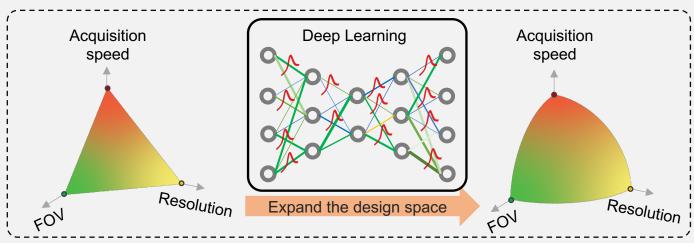
ficomputation such that $|\text{Intensity} = |\mathbf{A}x|^2$

- Model based inversion
- Learning based inversion

How to improve scalability for large-SBP imaging?

- » The number of measurements increases *quadratically* with final resolution^[1]
- » How to improve scalability for Spatio-temporal bandwidth engineering?

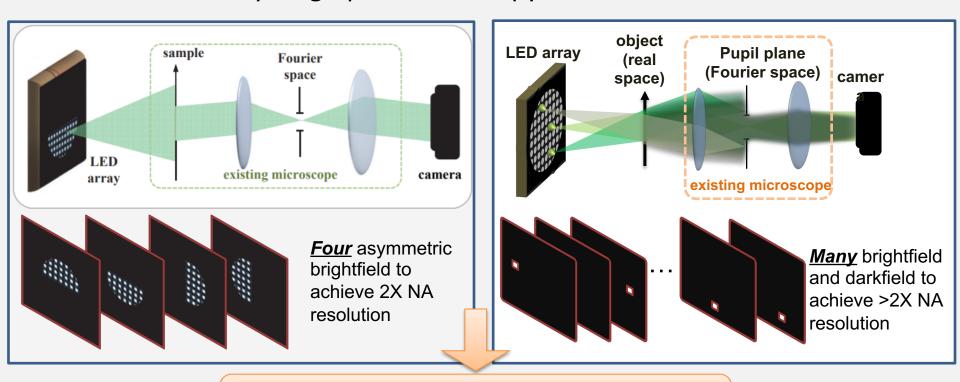




[1] Tian, Liu, Yeh, Chen, Zhong, Waller, "Computational illumination for high-speed in vitro Fourier ptychographic microscopy", Optica (2015)

Physics-guided deep learning for efficient large-SBP phase imaging

- » Asymmetric illumination encodes both phase and high resolution information
 - » Differential Phase Contrast Microscopy
 - » Fourier Ptychographic Microscopy



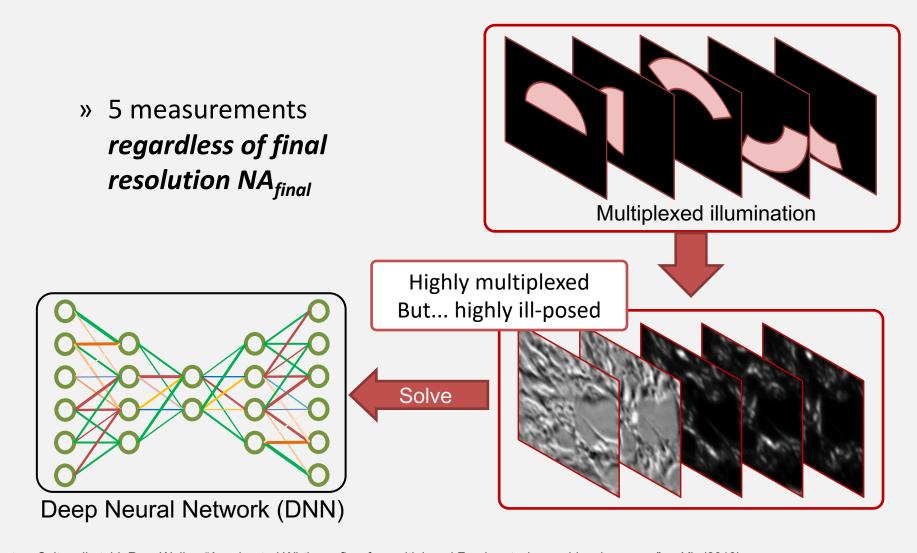
Design more efficient measurement by combining **physics** and **deep learning**

Physics-guided measurements for deep learning

using multiplexed illumination **Same Fourier** coverage, **Highly multiplexed** LED_v Illumination object's **Fourier space** pattern k_{v} LED_x Asymmetric illumination from 2 brightfield & 3 darkfield multiplex phase and high resolution efficiently

Xue, Cheng, Li, Tian, "Illumination coding meets uncertainty learning: toward reliable Al-augmented phase imaging", arXiv (2019)

Physics-guided measurements for deep learning using multiplexed illumination

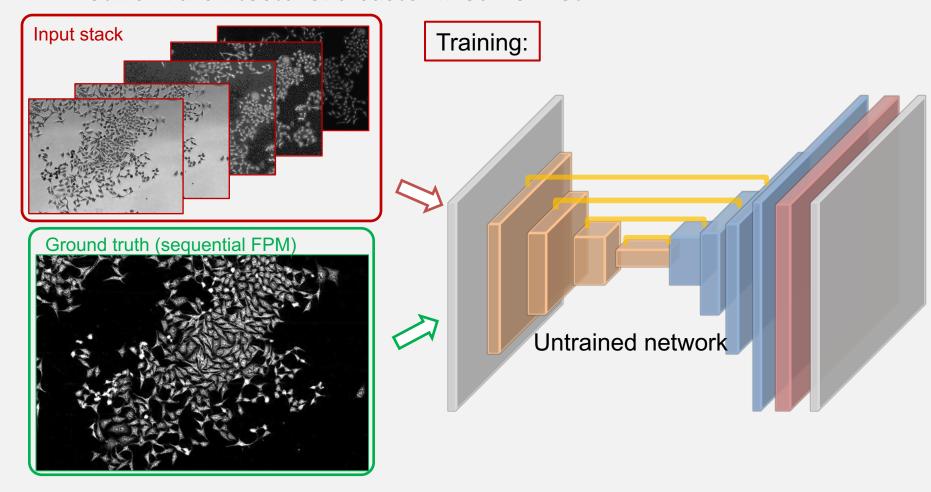


^[1] Bostan, Soltanolkotabi, Ren, Waller, "Accelerated Wirtinger flow for multiplexed Fourier ptychographic microscopy", arXiv (2018)

^[2] Chen, Fannjiang, "Coded aperture ptychography: uniqueness and reconstruction", *Inverse Problems* (2018)

Deep neural network can solve highly ill-posed inverse problems

» Network architecture: a customized "U-Net"[1-2]

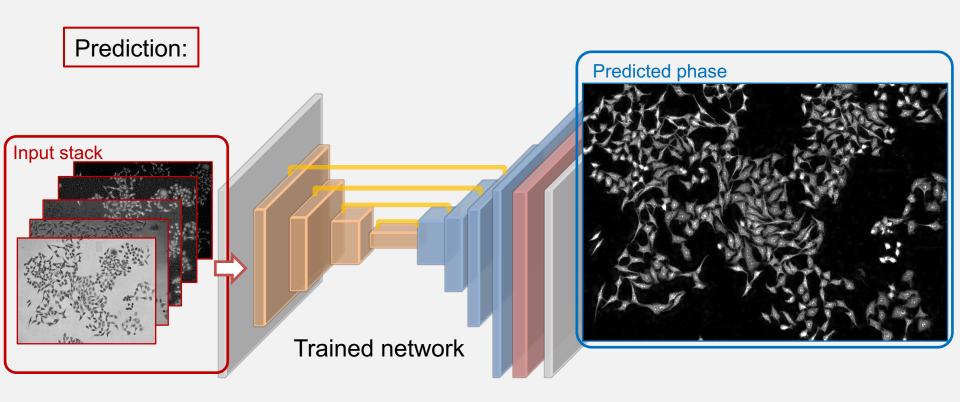


^[1] Ronneberger, Fischer, Brox, "U-Net: Convolutional Networks for Biomedical Image segmentation", MICCAI (2015)

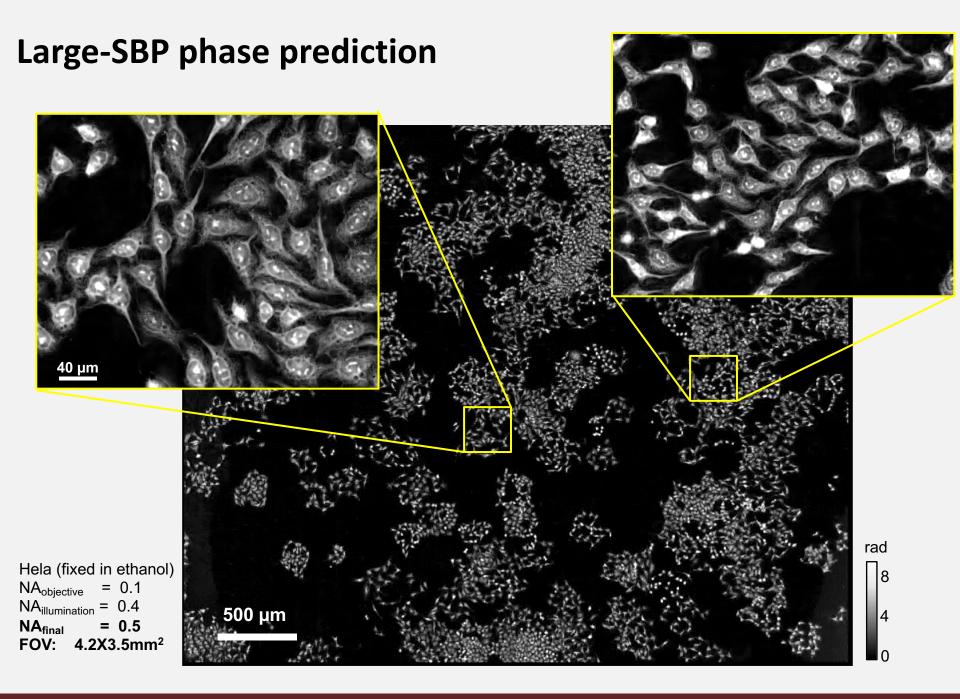
^[2] Falk, et. al., "U-Net: deep learning for cell counting, detection and morphometry", Nat. Methods (2018)

^[3] Xue, Cheng, Li, Tian, "Illumination coding meets uncertainty learning: toward reliable Al-augmented phase imaging", arXiv (2019)

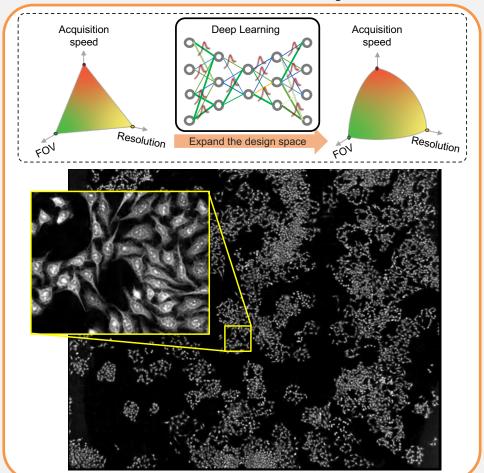
Deep neural network can solve highly ill-posed inverse problems

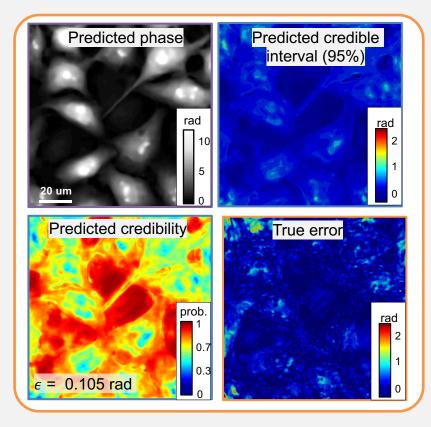


- [1] Xue, Cheng, Li, Tian, "Illumination coding meets uncertainty learning: toward reliable Al-augmented phase imaging", arXiv (2019).
- [2] Sinha, Ayan, et al. "Lensless computational imaging through deep learning." Optica 4.9 (2017): 1117-1125.
- [3] Goy, Alexandre, et al. "Low photon count phase retrieval using deep learning." Physical review letters 121.24 (2018): 243902.
- [4] Li, Shuai, et al. "Imaging through glass diffusers using densely connected convolutional networks." optica 5.7 (2018): 803-813.
- [5] Nguyen, Thanh, et al. "Deep learning approach for Fourier ptychography microscopy." Optics express 26.20 (2018): 26470-26484.
- [6] Rivenson, et al. "Phase recovery and holographic image reconstruction using deep learning in neural networks." Light: Science & Applications (2018).



Scalable and **reliable** deep learning for computational microscopy





- » Physics-guided measurement design for efficient large-SBP imaging
- » Uncertainty quantification towards reliable deep learning

[1] Xue, Cheng, Li, Tian, "Illumination coding meets uncertainty learning: toward reliable Al-augmented phase imaging", arXiv (2019).

Need for <u>uncertainty quantification</u> for deep Learning applied to biomedical imaging

- » Existing examples of DNN solving nonlinear, complex problems
 - » Super resolution^[1], phase imaging^[2], holography^[3], imaging through scattering^[4], virtual staining/labeling^[5], ...
- » Though effective, remains a black box
 Input
 BLACK BOX
 How much should we <u>trust</u> it?

» Importance of *uncertainty quantification*^[7]

^[1] Wang, et. al, "Deep learning enables cross-modality super-resolution in fluorescence microscopy", Nat. Methods (2019).

^[2] Goy, Arthur, Li, Barbastathis, "Low photon count phase retrieval using deep learning", Phys. Rev. Lett. (2018)

^[3] Rivenson, et al. "Phase recovery and holographic image reconstruction using deep learning in neural networks." Light: Science & Applications (2018).

^[4] Li, Xue, Tian, "Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media", Optica (2018)

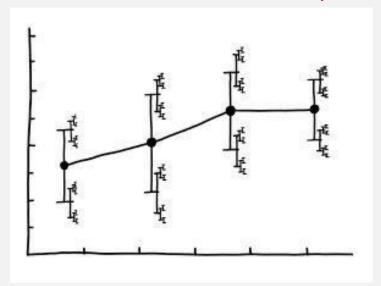
^[5] Christiansen, et al. "In silico labeling: Predicting fluorescent labels in unlabeled images." Cell 173.3 (2018): 792-803.

^[6] Weigert, et. al.., "Content-aware image restoration: pushing the limits of fluorescence microscopy", Nat. Methods (2018)

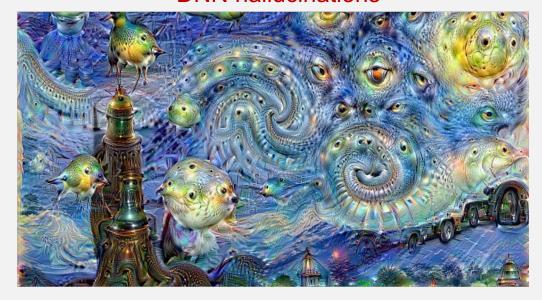
^[7] Begoli, Bhattacharya, Kusnezov, "The need for uncertainty quantification in machine-assisted medical decision making", Nat. Mach. Intell. (2019)

Why uncertainty quantification?

How to assess errors in DNN predictions?



DNN hallucinations



Uncertainties in DNN

- » Two types of uncertainties in deep learning:
- Model uncertainty:
- Randomness in training process:
 - Stochastic gradient descent training algorithm
 - Network initialization
 - → Trained model varies in different rounds!

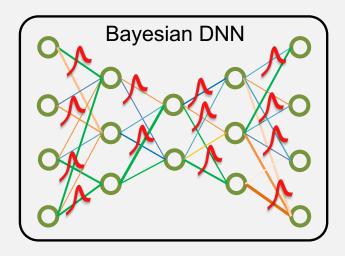
- **Data** uncertainty:
- Experimental noise:
 - Sensor noise
 - Misalignment
 - Spatial varying aberration
 - etc.
 - → Can lead to prediction artifacts!

How do we quantify uncertainties?

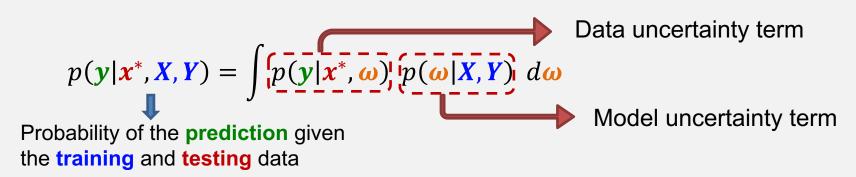
→ Bayesian DNN

^[2] Kendall, Gal, "What uncertainties do we need in Bayesian deep learning for computer vision", NIPS (2017)

Overview of Bayesian DNN



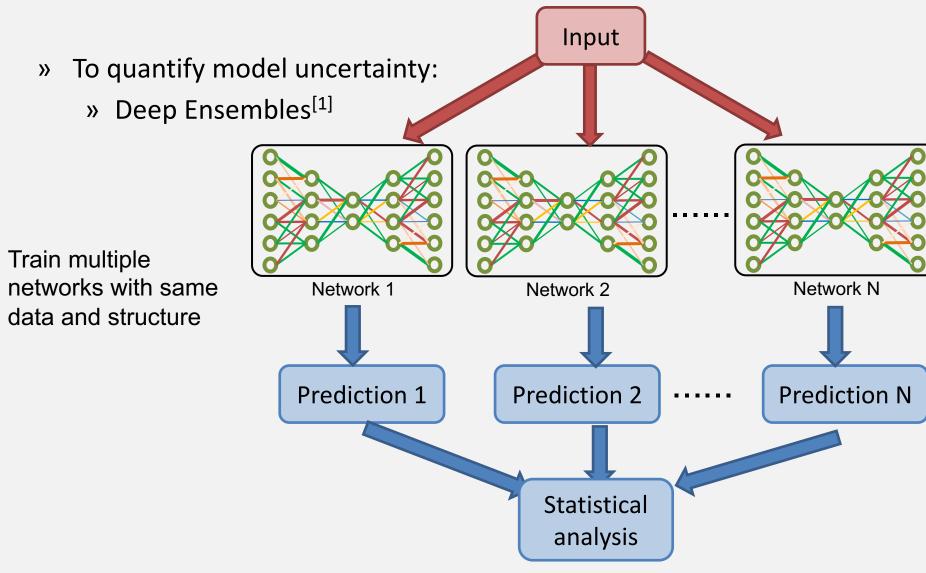
- » Both DNN weights and predictions are random variables
- » Apply Bayes' rule to DNN prediction...



[1] Kiureghian, Ditlevsen, "Aleatory or epistemic? Does it matter?", Struct. Saf. (2009)

[2] Kendall, Gal, "What uncertainties do we need in Bayesian deep learning for computer vision", NIPS (2017)

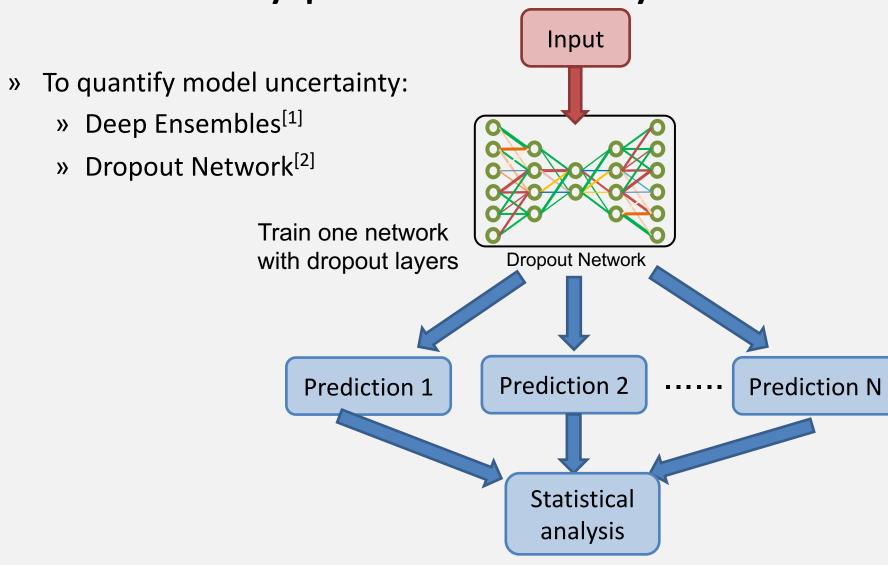
Model uncertainty quantifies stochasticity in DNN



^[1] Lakshminarayan, Pritzel, Blundell, "Simple and scalable Predictive Uncertainty Estimation using Deep Ensembles", NIPS, (2017)

^[2] Gal, Ghahramani, "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning", ICML (2016)

Model uncertainty quantifies stochasticity in DNN



^[1] Lakshminarayan, Pritzel, Blundell, "Simple and scalable Predictive Uncertainty Estimation using Deep Ensembles", NIPS, (2017)

^[2] Gal, Ghahramani, "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning", ICML (2016)

Data uncertainty quantifies randomness in data

- » To quantify data uncertainty:
 - » Commonly used loss function: mean squared error (MSE), mean absolute error (MAE), etc.

Assumes uniform noise across all measurements

» Our customized loss function:

Pixel-wise variance allows quantification of **non-uniform** noise

$$Loss = \sum \left[\frac{|y - \mu^{pred}|}{\sigma^{pred}} + \log(2\sigma^{pred}) \right]$$

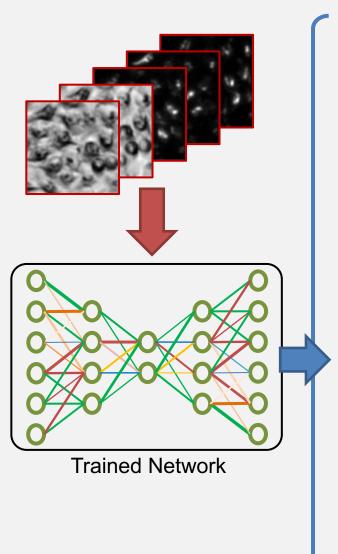
- Only samples (x, y) needed for training
- Network "learns" pixel-wise mean & variance from data

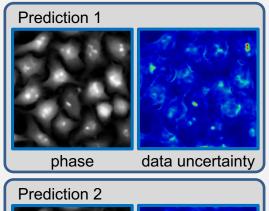
 μ^{pred} : pixel-wise mean

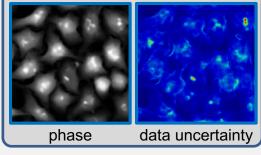
 σ^{pred} : pixel-wise variance

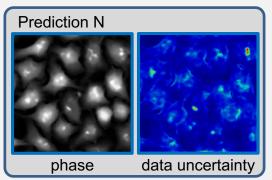
Xue, Cheng, Li, Tian, "Illumination coding meets uncertainty learning: toward reliable Al-augmented phase imaging", arXiv (2019)

Uncertainty learning framework

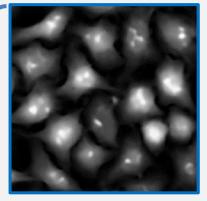




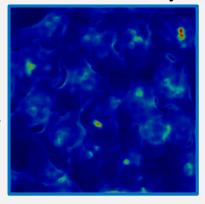




predicted phase

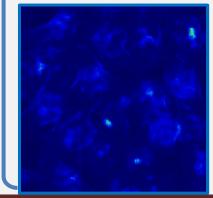


data uncertainty



Statistical analysis

model uncertainty



Statistical analysis for uncertainty quantification

Total uncertainty:

$$\hat{\sigma}_i^2 \equiv var(y_i|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \mathrm{E}[Var(y_i|\mathbf{\omega}, \mathbf{x}^*)] + Var(\mathrm{E}[y_i|\mathbf{\omega}, \mathbf{x}^*])$$

$$\approx \frac{1}{T} \sum_{t=1}^{T} 2(\sigma_i^t)^2 + \frac{1}{T} \sum_{t=1}^{T} (\mu_i^t - \hat{\mu}_i)^2 = (\sigma_i^D)^2 + (\sigma_i^M)^2$$

data uncertainty:

mean of the predicted

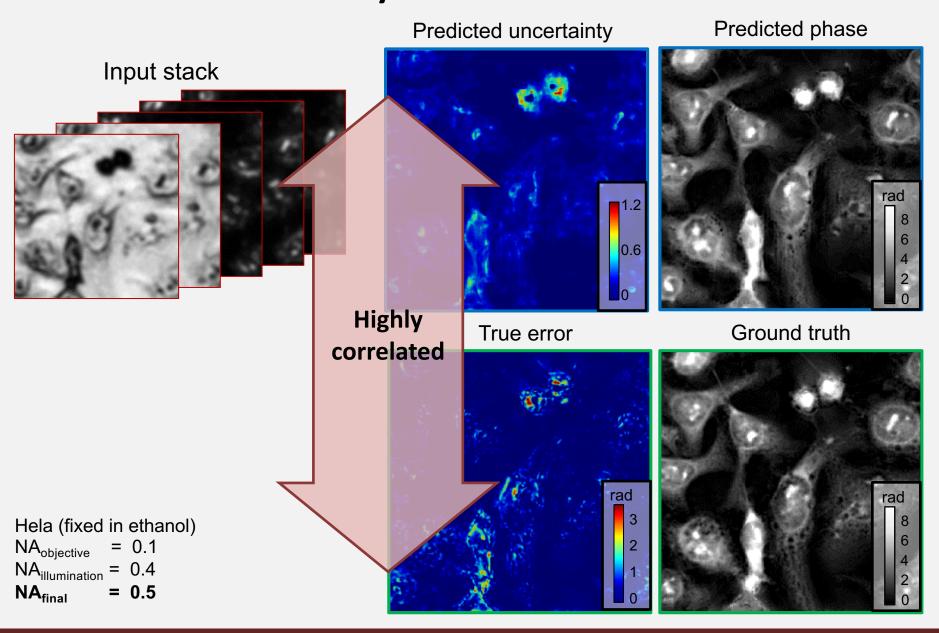
variance

model uncertainty:

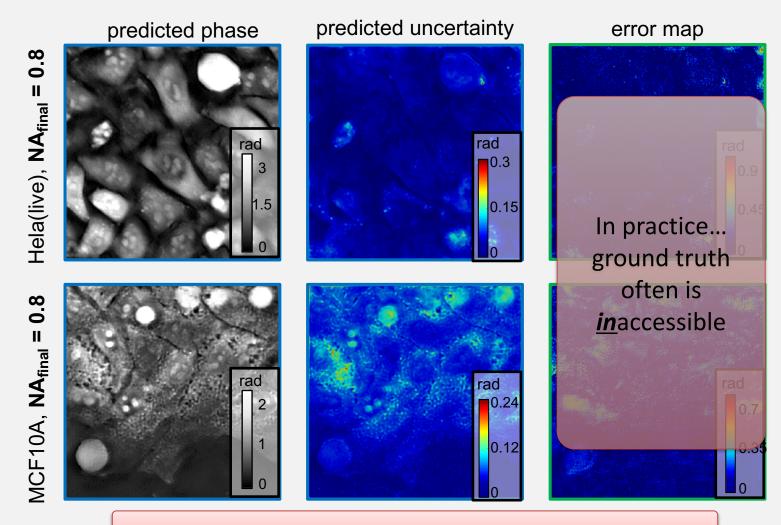
variance of the

predicted mean (phase)

Predicted uncertainty correlates with true error



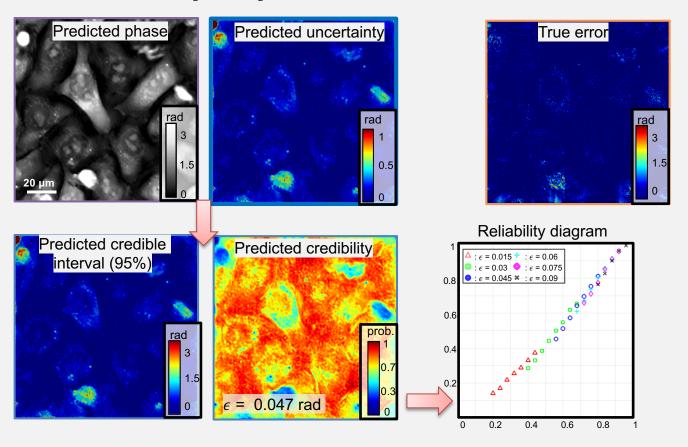
Scalability in cell types and resolution



Predicted uncertainty as surrogate to the true error

[1] Xue, Cheng, Li, Tian, "Illumination coding meets uncertainty learning: toward reliable Al-augmented phase imaging", arXiv (2019)

Reliability assessment by Bayesian statistical inference

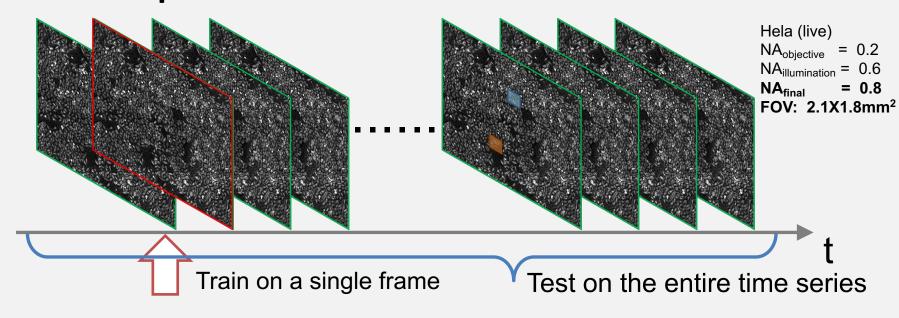


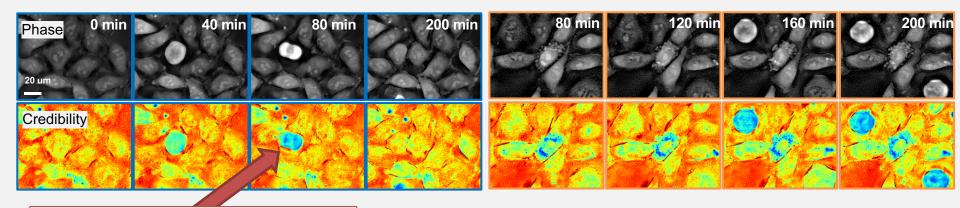
- » Quantification of *reliability* of the predicted phase
 - » Credible interval quantitatively estimates the error bound in the prediction
 - » Credibility provides a probabilistic measure of the reliability of prediction in %
 - » **Reliability diagram** measures *predicted credibility* vs *true accuracy*.

^[1] Xue, Cheng, Li, Tian, "Illumination coding meets uncertainty learning: toward reliable Al-augmented phase imaging", arXiv (2019)

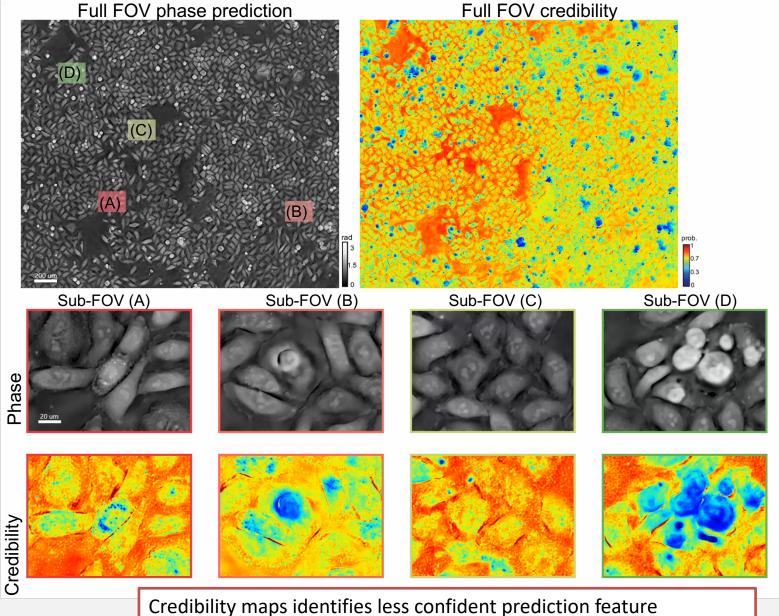
^[2] Niculescu-Mizil, Caruana, "Predicting good probabilities with supervised learning", ICML, (2005)

Time series prediction and identification of rare events





Credibility decreases when 'rare' events take place

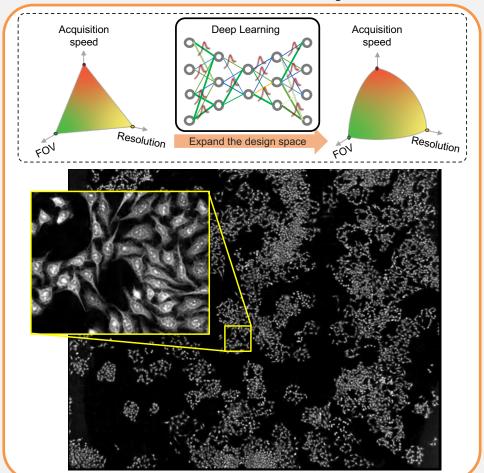


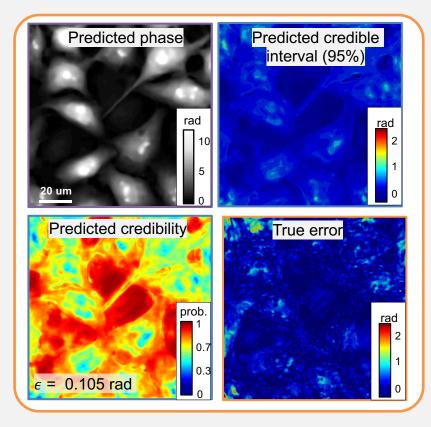
Hela (live) **NA**_{obiective} = 0.2 $NA_{illumination} = 0.6$ NA_{final}

FOV: 2.1X1.8mm²

- Hallucination artifacts marked with low credibility
- Improve training data → more robust prediction
- Rare biological events → (maybe) can facilitates new discovery

Scalable and **reliable** deep learning for computational microscopy



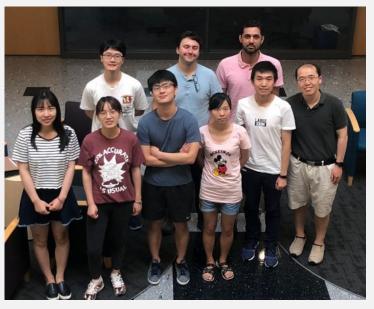


- » Physics-guided measurement design for efficient large-SBP imaging
- » Uncertainty quantification towards reliable deep learning

[1] Xue, Cheng, Li, Tian, "Illumination coding meets uncertainty learning: toward reliable Al-augmented phase imaging", arXiv (2019).

Acknowledgements

- » Members @ BU Computational Imaging Systems Lab
 - » Yujia Xue, Shiyi Cheng, Yunzhe Li, Alex Matlock, Waleed Tahir, Jiaji Li
- » Postdoc group @ UC Berkeley Waller Lab
- » Collaborators:
 - Jerome Mertz, David Boas, Roberto Paiella, Ian Davison (BU), Yi Ji (BUMC), Ulugbek Kamilov (WUSTL), Hakho Lee (MGH)



http://sites.bu.edu/tianlab/

» Funding:

Boston University College of Engineering Department of Electrical & Computer Engineering